Image deblurring is a classical computer vision problem that aims to recover a sharp image from a blurred image. To solve this problem, existing methods apply the Encode-Decode architecture to design the complex networks to make a good performance. However, most of these methods use repeated up-sampling and down-sampling structures to expand the receptive field, which results in texture information loss during the sampling process and some of them design the multiple stages that lead to difficulties with convergence. Therefore, our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution. Through making full use of the different receptive fields, our method can achieve better performance. On this basis, we reduce the number of up-sampling and down-sampling and design a simple network structure. Besides, we propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details. Qualitative and quantitative evaluations of real and synthetic datasets show that our deblurring method is comparable to existing algorithms in terms of performance with much lower training requirements. The source code and pre-trained models are available at https://github.com/FlyEgle/SDWNet.
翻译:图像分流是一个典型的计算机视觉问题,目的是从模糊的图像中恢复清晰的图像。 为了解决这个问题,现有方法应用Encode-Decode结构来设计复杂的网络,以取得良好的性能。然而,这些方法大多使用重复的上下抽样和下抽样结构来扩大可接受字段,从而在取样过程中造成质素信息丢失,其中一些方法设计了导致趋同困难的多个阶段。因此,我们的模型使用放大变异,以空间分辨率高的方式获取大可接收域。通过充分利用不同的可接收域,我们的方法可以取得更好的性能。在此基础上,我们减少上下抽样和下抽样结构的数量,并设计一个简单的网络结构。此外,我们提出一个使用波盘变的新模块,有效地帮助网络恢复高频质谱细节。对真实和合成数据集的定性和定量评估表明,我们的分流率方法在低得多的培训要求的性能方面可以与现有的算法相比。源码和预变型模型可在 httpsluburring /Wgredustrate模型中找到。