On-chip memory (usually based on Static RAMs-SRAMs) are crucial components for various computing devices including heterogeneous devices, e.g., GPUs, FPGAs, ASICs to achieve high performance. Modern workloads such as Deep Neural Networks (DNNs) running on these heterogeneous fabrics are highly dependent on the on-chip memory architecture for efficient acceleration. Hence, improving the energy-efficiency of such memories directly leads to an efficient system. One of the common methods to save energy is undervolting i.e., supply voltage underscaling below the nominal level. Such systems can be safely undervolted without incurring faults down to a certain voltage limit. This safe range is also called voltage guardband. However, reducing voltage below the guardband level without decreasing frequency causes timing-based faults. In this paper, we propose MoRS, a framework that generates the first approximate undervolting fault model using real faults extracted from experimental undervolting studies on SRAMs to build the model. We inject the faults generated by MoRS into the on-chip memory of the DNN accelerator to evaluate the resilience of the system under the test. MoRS has the advantage of simplicity without any need for high-time overhead experiments while being accurate enough in comparison to a fully randomly-generated fault injection approach. We evaluate our experiment in popular DNN workloads by mapping weights to SRAMs and measure the accuracy difference between the output of the MoRS and the real data. Our results show that the maximum difference between real fault data and the output fault model of MoRS is 6.21%, whereas the maximum difference between real data and random fault injection model is 23.2%. In terms of average proximity to the real data, the output of MoRS outperforms the random fault injection approach by 3.21x.


翻译:芯片内存(通常基于静态 RAMS-SRAMs) 是各种计算设备的关键组成部分, 包括混杂设备( 如 GPUs、 FPGAs、 ASIC ), 包括 GPUs 、 FPGAs、 ASIC 等, 实现高性能。 在这些混杂结构上运行的深神经网络( DNNs ) 等现代工作量高度依赖于对芯片内存结构结构的高效加速。 因此, 提高这种记忆的节能效率直接导致一个高效的系统。 节省能源的常见方法之一正在变化中出现差异, 即: 在标定的重量之下, 供应压低的电压。 这种系统可以安全地淡化准确度, 而不会导致故障, 调低的电动保护带网网络内网络内网络内网络内网络内网络内网络内网络内的数据输出值 。 在IMIS 的内, 测试中, 最高级数据机能性数据输出中, 需要由IMSNRIS 的高级数据测试中, 的内流流流流数据流中, 真正的数据流流流数据流数据流中, 我们的断断到最高级数据测试中, 需要由IMIS 测试中的任何数据流数据流数据流数据流中, 测试中的任何数据流数据流数据流数据流中, 任何数据流数据流数据流数据流数据流中, 的内数据流中, 的内数据流中, 需要充分测试中的任何数据流数据流中的任何数据流数据流数据流数据流。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员