Deep neural networks have shown many fruitful applications in this decade. A network can get the generalized function through training with a finite dataset. The degree of generalization is a realization of the proximity scale in the data space. Specifically, the scale is not clear if the dataset is complicated. Here we consider a network for the distribution estimation of the dataset. We show the estimation is unstable and the instability depends on the data density and training duration. We derive the kernel-balanced equation, which gives a short phenomenological description of the solution. The equation tells us the reason for the instability and the mechanism of the scale. The network outputs a local average of the dataset as a prediction and the scale of averaging is determined along the equation. The scale gradually decreases along training and finally results in instability in our case.
翻译:暂无翻译