Recent developments in Artificial Intelligence techniques have enabled their successful application across a spectrum of commercial and industrial settings. However, these techniques require large volumes of data to be aggregated in a centralized manner, forestalling their applicability to scenarios wherein the data is sensitive or the cost of data transmission is prohibitive. Federated Learning alleviates these problems by decentralizing model training, thereby removing the need for data transfer and aggregation. To advance the adoption of Federated Learning, more research and development needs to be conducted to address some important open questions. In this work, we propose OpenFed, an open-source software framework for end-to-end Federated Learning. OpenFed reduces the barrier to entry for both researchers and downstream users of Federated Learning by the targeted removal of existing pain points. For researchers, OpenFed provides a framework wherein new methods can be easily implemented and fairly evaluated against an extensive suite of benchmarks. For downstream users, OpenFed allows Federated Learning to be plug and play within different subject-matter contexts, removing the need for deep expertise in Federated Learning.


翻译:人工智能技术的近期发展使其在一系列商业和工业环境中得以成功应用,然而,这些技术要求以集中方式汇总大量数据,防止其适用于敏感数据或数据传输费用过高的情景; 联邦学习联合会通过分散示范培训来缓解这些问题,从而消除数据传输和汇总的需要; 为推动采用联邦学习联合会,需要开展更多的研究和开发工作,以解决一些重要的未决问题; 在这项工作中,我们提议建立一个开放源软件框架,用于端到端的联邦学习; 通过有针对性地消除现有疼痛点,减少联邦学习研究人员和下游用户进入联邦学习联合会的障碍; 对研究人员来说,开放基金提供了一个框架,便于采用新的方法,并根据一套广泛的基准进行公平的评估; 对下游用户来说,开放基金允许联邦学习组织在不同的主题范围内插插和玩耍,从而消除了对联邦学习联合会深入专业知识的需求。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
37+阅读 · 2021年9月28日
Compression of Deep Learning Models for Text: A Survey
Arxiv
45+阅读 · 2019年12月20日
Federated Learning with Personalization Layers
Arxiv
4+阅读 · 2019年12月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
相关论文
Top
微信扫码咨询专知VIP会员