Multiview registration is used to estimate Rigid Body Transformations (RBTs) from multiple frames and reconstruct a scene with corresponding scans. Despite the success of pairwise registration and pose synchronization, the concept of Bundle Adjustment (BA) has been proven to better maintain global consistency. So in this work, we make the multiview point-cloud registration more tractable from a different perspective in resolving range-based BA. Based on this analysis, we propose an objective function that takes both measurement noises and computational cost into account. For the feature parameter update, instead of calculating the global distribution parameters from the raw measurements, we aggregate the local distributions upon the pose update at each iteration. The computational cost of feature update is then only dependent on the number of scans. Finally, we develop a multiview registration system using voxel-based quantization that can be applied in real-world scenarios. The experimental results demonstrate our superiority over the baselines in terms of both accuracy and speed. Moreover, the results also show that our average positioning errors achieve the centimeter level.
翻译:多视图注册用于从多个框架估算硬体体变形(RBTs), 并用相应的扫描来重建场景。 尽管双向注册成功, 并具有同步性, 但 Bundle调整(BA) 的概念已被证明可以更好地保持全球一致性 。 因此, 在这项工作中, 我们使多视图点球注册从不同角度更便于从不同角度解决以范围为基础的 BA 。 基于此分析, 我们提出了一个客观功能, 既考虑测量噪音,也考虑计算计算计算计算计算计算成本。 对于功能参数更新, 而不是从原始测量中计算全球分布参数, 我们在每次迭代更新时对本地分布进行汇总。 地貌更新的计算成本仅取决于扫描数量 。 最后, 我们开发了一个多视图注册系统, 使用基于 voxel 的四分法, 可以在现实世界情景中应用。 实验结果显示我们在精确和速度两方面都优于基线。 此外, 实验结果还显示我们的平均定位错误达到了厘米水平 。