LiDAR-Inertial Odometry (LIO) is a foundational technique for autonomous systems, yet its deployment on resource-constrained platforms remains challenging due to computational and memory limitations. We propose Super-LIO, a robust LIO system that demands both high performance and accuracy, ideal for applications such as aerial robots and mobile autonomous systems. At the core of Super-LIO is a compact octo-voxel-based map structure, termed OctVox, that limits each voxel to eight fused subvoxels, enabling strict point density control and incremental denoising during map updates. This design enables a simple yet efficient and accurate map structure, which can be easily integrated into existing LIO frameworks. Additionally, Super-LIO designs a heuristic-guided KNN strategy (HKNN) that accelerates the correspondence search by leveraging spatial locality, further reducing runtime overhead. We evaluated the proposed system using four publicly available datasets and several self-collected datasets, totaling more than 30 sequences. Extensive testing on both X86 and ARM platforms confirms that Super-LIO offers superior efficiency and robustness, while maintaining competitive accuracy. Super-LIO processes each frame approximately 73% faster than SOTA, while consuming less CPU resources. The system is fully open-source and plug-and-play compatible with a wide range of LiDAR sensors and platforms. The implementation is available at: https://github.com/Liansheng-Wang/Super-LIO.git
翻译:激光雷达-惯性里程计(LIO)是自主系统的基础技术,但由于计算和内存限制,其在资源受限平台上的部署仍具挑战性。本文提出Super-LIO,一种兼具高性能与高精度的鲁棒LIO系统,特别适用于无人机与移动自主系统等应用场景。Super-LIO的核心是一种基于紧凑八叉体素的地图结构(称为OctVox),该结构将每个体素限制为八个融合子体素,从而实现了严格的点云密度控制与地图更新过程中的增量去噪。这一设计形成了一种简洁、高效且精确的地图结构,可轻松集成到现有LIO框架中。此外,Super-LIO设计了一种启发式引导的K近邻搜索策略(HKNN),通过利用空间局部性加速对应点搜索,进一步降低了运行时开销。我们使用四个公开数据集及多个自采集数据集(总计超过30条序列)对所提系统进行了评估。在X86与ARM平台上的大量测试表明,Super-LIO在保持竞争力精度的同时,提供了卓越的效率与鲁棒性。Super-LIO处理每帧数据的速度较当前最优方法提升约73%,且消耗更少的CPU资源。该系统完全开源,具备即插即用特性,兼容多种激光雷达传感器与平台。实现代码发布于:https://github.com/Liansheng-Wang/Super-LIO.git