Plant diseases pose a significant threat to agricultural productivity and global food security, accounting for 70-80% of crop losses worldwide. Traditional detection methods rely heavily on expert visual inspection, which is time-consuming, labour-intensive, and often impractical for large-scale farming operations. In this paper, we present PlantDiseaseNet-RT50, a novel fine-tuned deep learning architecture based on ResNet50 for automated plant disease detection. Our model features strategically unfrozen layers, a custom classification head with regularization mechanisms, and dynamic learning rate scheduling through cosine decay. Using a comprehensive dataset of distinct plant disease categories across multiple crop species, PlantDiseaseNet-RT50 achieves exceptional performance with approximately 98% accuracy, precision, and recall. Our architectural modifications and optimization protocol demonstrate how targeted fine-tuning can transform a standard pretrained model into a specialized agricultural diagnostic tool. We provide a detailed account of our methodology, including the systematic unfreezing of terminal layers, implementation of batch normalization and dropout regularization and application of advanced training techniques. PlantDiseaseNet-RT50 represents a significant advancement in AI-driven agricultural tools, offering a computationally efficient solution for rapid and accurate plant disease diagnosis that can be readily implemented in practical farming contexts to support timely interventions and reduce crop losses.


翻译:植物病害对农业生产力和全球粮食安全构成重大威胁,占全球作物损失的70-80%。传统检测方法主要依赖专家目视检查,耗时费力,且在大规模农业作业中往往不切实际。本文提出PlantDiseaseNet-RT50,一种基于ResNet50进行微调的新型深度学习架构,用于自动化植物病害检测。我们的模型具有策略性解冻的层、带有正则化机制的自定义分类头,以及通过余弦衰减实现的动态学习率调度。利用一个涵盖多种作物物种、包含不同植物病害类别的综合数据集,PlantDiseaseNet-RT50实现了约98%的准确率、精确率和召回率,表现出卓越性能。我们的架构修改和优化方案证明了有针对性的微调如何能将标准预训练模型转化为专业的农业诊断工具。我们详细阐述了方法学,包括末端层的系统性解冻、批量归一化与丢弃正则化的实施,以及先进训练技术的应用。PlantDiseaseNet-RT50代表了人工智能驱动的农业工具的重大进展,为快速、准确的植物病害诊断提供了一种计算高效的解决方案,可轻松应用于实际农业场景,以支持及时干预并减少作物损失。

0
下载
关闭预览

相关内容

【ECCV2022】对比视觉Transformer的在线持续学习
专知会员服务
23+阅读 · 2022年7月29日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ECCV2022】对比视觉Transformer的在线持续学习
专知会员服务
23+阅读 · 2022年7月29日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
40+阅读 · 2022年2月28日
【AAAI2021】“可瘦身”的生成式对抗网络
专知会员服务
13+阅读 · 2020年12月12日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员