The AI community is increasingly putting its attention towards combining symbolic and neural approaches, as it is often argued that the strengths and weaknesses of these approaches are complementary. One recent trend in the literature are weakly supervised learning techniques that employ operators from fuzzy logics. In particular, these use prior background knowledge described in such logics to help the training of a neural network from unlabeled and noisy data. By interpreting logical symbols using neural networks, this background knowledge can be added to regular loss functions, hence making reasoning a part of learning. We study, both formally and empirically, how a large collection of logical operators from the fuzzy logic literature behave in a differentiable learning setting. We find that many of these operators, including some of the most well-known, are highly unsuitable in this setting. A further finding concerns the treatment of implication in these fuzzy logics, and shows a strong imbalance between gradients driven by the antecedent and the consequent of the implication. Furthermore, we introduce a new family of fuzzy implications (called sigmoidal implications) to tackle this phenomenon. Finally, we empirically show that it is possible to use Differentiable Fuzzy Logics for semi-supervised learning, and compare how different operators behave in practice. We find that, to achieve the largest performance improvement over a supervised baseline, we have to resort to non-standard combinations of logical operators which perform well in learning, but no longer satisfy the usual logical laws.
翻译:AI社区越来越重视将象征性和神经方法结合起来,因为人们常常争辩说,这些方法的优缺点是相辅相成的。文献中最近的一个趋势是缺乏监督的学习技巧,这些手法雇用了模糊逻辑的操作者。特别是,这些手法使用这些逻辑中描述的先前背景知识,帮助培训神经网络,利用未贴标签和吵闹的数据。通过使用神经网络解释逻辑符号,这种背景知识可以添加到常规损失功能中,从而将推理作为学习的一部分。我们正式和实证地研究了从模糊逻辑文献中收集的大量逻辑操作者如何在不同的学习环境中行事。我们发现,许多这些操作者,包括一些最著名的操作者,在这种环境中非常不合适。进一步发现,如何处理这些模糊逻辑逻辑的逻辑,并显示出由神经网络驱动的梯度和由此引发的梯度之间的严重不平衡。此外,我们引入了一种新的模糊含义(所谓的“细相影响 ” ), 来消除这一现象。最后,我们从经验上看,我们从逻辑上看,我们从逻辑上看,可以更接近于一种不同的操作者的行为方式,我们从不同的标准上学习,从不同的操作方法来,从不同的操作者可以学习,从不同的操作方法,从最接近于一种不同的操作者,从不同的操作方法,从不同的操作方法学得得更接近于不同的操作。