We consider the estimation of generalized additive models using basis expansions coupled with Bayesian model selection. Although Bayesian model selection is an intuitively appealing tool for regression splines, its use has traditionally been limited to Gaussian additive regression because of the availability of a tractable form of the marginal model likelihood. We extend the method to encompass the exponential family of distributions using the Laplace approximation to the likelihood. Although the approach exhibits success with any Gaussian-type prior distribution, there remains a lack of consensus regarding the best prior distribution for nonparametric regression through model selection. We observe that the classical unit information prior distribution for variable selection may not be well-suited for nonparametric regression using basis expansions. Instead, our investigation reveals that mixtures of g-priors are more suitable. We consider various mixtures of g-priors to evaluate the performance in estimating generalized additive models. Furthermore, we conduct a comparative analysis of several priors for knots to identify the most practically effective strategy. Our extensive simulation studies demonstrate the superiority of model selection-based approaches over other Bayesian methods.
翻译:暂无翻译