Sum-rank-metric codes have wide applications in such as universal error correction and security in multishot network, space-time coding and construction of partial-MDS codes for repair in distributed storage. Fundamental properties of sum-rank-metric codes have been studied and some explicit or probabilistic constructions of good sum-rank-metric codes have been proposed. In this paper we propose two simple constructions of explicit linear sum-rank-metric codes. In finite length regime, numerous good linear sum-rank-metric codes from our construction are given. Some of them have better parameters than previous constructed sum-rank-metric codes. For example a lot of small block size better linear sum-rank-metric codes over ${\bf F}_q$ of the matrix size $2 \times 2$ are constructed for $q=2, 3, 4$. Asymptotically our constructed sum-rank-metric codes are closing to the Gilbert-Varshamov-like bound for the sum-rank-metric codes for some parameters.
翻译:超正数代码在诸如通用误差校正和多发网络安全、空间时间编码和在分布式储存中建造部分MDS代码等具有广泛应用性,研究了超正数代码的基本特性,并提出了一些明确或概率的精度正数代码。在本文件中,我们提议了两种简单的直线和正数代码结构。在有限的长度制度中,提供了我们建筑中的许多良好的线性正数代码。其中一些参数比以前建造的超正数代码要好。例如,许多小块大小的超正数直线和正数代码比矩阵规模中2美元=2美元、3美元和4美元要好得多。我们建造的超正数代码正在接近Gilbert-Varshamov等标准,以某些参数的超正数代码为基尔伯特-Varshamov。