Three-dimensional cardiovascular fluid dynamics simulations typically require computation of several cardiac cycles before they reach a periodic solution, rendering them computationally expensive. Furthermore, there is currently no standardized method to determine whether a simulation has yet reached that periodic state. In this work, we propose use of the asymptotic error measure to quantify the difference between simulation results and their ideal periodic state using lumped-parameter modeling. We further show that initial conditions are crucial in reducing computational time and develop an automated framework to generate appropriate initial conditions from a one-dimensional model of blood flow. We demonstrate the performance of our initialization method using six patient-specific models from the Vascular Model Repository. In our examples, our initialization protocol achieves periodic convergence within one or two cardiac cycles, leading to a significant reduction in computational cost compared to standard methods. All computational tools used in this work are implemented in the open-source software platform SimVascular. Automatically generated initial conditions have the potential to significantly reduce computation time in cardiovascular fluid dynamics simulations.
翻译:三维心血管流体动态模拟通常要求在达到定期溶液之前计算几个心脏周期,使其计算费用昂贵。此外,目前没有标准化的方法来确定模拟是否达到周期状态。在这项工作中,我们提议使用无症状误差计量方法,使用粗略参数模型来量化模拟结果与其理想周期状态之间的差异。我们进一步表明初始条件对于缩短计算时间至关重要,并开发一个自动框架,以便从血液流动的一维模型中产生适当的初始条件。我们用六个特定病人的模型演示了我们初始化方法的性能。在我们的事例中,我们的初始化协议在一个或两个心脏周期内实现定期趋同,导致计算成本与标准方法相比大幅下降。这项工作使用的所有计算工具都在开放源软件平台SimVasculus中实施。自动生成的初始条件有可能大大缩短心血管流体动力模拟的计算时间。