Equipping characters with diverse motor skills is the current bottleneck of physics-based character animation. We propose a Deep Reinforcement Learning (DRL) framework that enables physics-based characters to learn and explore motor skills from reference motions. The key insight is to use loose space-time constraints, termed spacetime bounds, to limit the search space in an early termination fashion. As we only rely on the reference to specify loose spacetime bounds, our learning is more robust with respect to low quality references. Moreover, spacetime bounds are hard constraints that improve learning of challenging motion segments, which can be ignored by imitation-only learning. We compare our method with state-of-the-art tracking-based DRL methods. We also show how to guide style exploration within the proposed framework
翻译:以多种运动技能向角色提供不同运动技能的功能是目前物理性格动画的瓶颈。 我们提议了一个深强化学习框架,使物理性能能从参考动作中学习和探索运动技能。 关键洞察力是使用松散的空间时间限制,称为时空界限,以早期终止的方式限制搜索空间。 我们仅仅依靠引用来指定松散的空间时间界限,我们学习在低质量参考方面更加有力。 此外,时间界限是困难的制约因素,可以改进具有挑战性的运动部分的学习,而只有模仿才能忽略这些部分。我们将我们的方法与最先进的以跟踪为基础的DRL方法进行比较。 我们还展示了如何在拟议框架内指导探索的风格。