Implementing deep neural networks for learning the solution maps of parametric partial differential equations (PDEs) turns out to be more efficient than using many conventional numerical methods. However, limited theoretical analyses have been conducted on this approach. In this study, we investigate the expressive power of deep rectified quadratic unit (ReQU) neural networks for approximating the solution maps of parametric PDEs. The proposed approach is motivated by the recent important work of G. Kutyniok, P. Petersen, M. Raslan and R. Schneider (Gitta Kutyniok, Philipp Petersen, Mones Raslan, and Reinhold Schneider. A theoretical analysis of deep neural networks and parametric pdes. Constructive Approximation, pages 1-53, 2021), which uses deep rectified linear unit (ReLU) neural networks for solving parametric PDEs. In contrast to the previously established complexity-bound $\mathcal{O}\left(d^3\log_{2}^{q}(1/ \epsilon) \right)$ for ReLU neural networks, we derive an upper bound $\mathcal{O}\left(d^3\log_{2}^{q}\log_{2}(1/ \epsilon) \right)$ on the size of the deep ReQU neural network required to achieve accuracy $\epsilon>0$, where $d$ is the dimension of reduced basis representing the solutions. Our method takes full advantage of the inherent low-dimensionality of the solution manifolds and better approximation performance of deep ReQU neural networks. Numerical experiments are performed to verify our theoretical result.
翻译:实施深心神经网络以学习偏差方程式(PDEs)的解析图的深层神经网以学习偏差部分方程式(PDEs)的解析图比使用许多常规数字方法的效率要高。 但是,对这种方法进行了有限的理论分析。 在这项研究中,我们调查了深修的二次方程式(ReQU)神经网络(ReQU)的外表力量,以接近参数PDE的解析解析图。提议的方法是由G. Kutyniok、P. Petersen、M. Raslan和R. Schneider(Gitta Kutyniok、 Philipp Peter、 Mones Raslan 和 Reinhold Schneider 。对深心神经网络的深心电网网络和内基值的内基值的内基值的内基值的内基值的内基值的内基值的理论分析。 与以前建立的复杂- $(d3\log) 内基的内基的内基值 内基值的内基值的内基的内基的内基的内基的内基的内基的内基的内基的内基值的内基值 的内基值的内基值 的内基值的内基的内基值的内基值的内基值的内基性结果的内基的内基的内基的内基值的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基值的计算结果是我们的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基性结果的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基性结果。