Ultrasonography is an important routine examination for breast cancer diagnosis, due to its non-invasive, radiation-free and low-cost properties. However, the diagnostic accuracy of breast cancer is still limited due to its inherent limitations. It would be a tremendous success if we can precisely diagnose breast cancer by breast ultrasound images (BUS). Many learning-based computer-aided diagnostic methods have been proposed to achieve breast cancer diagnosis/lesion classification. However, most of them require a pre-define ROI and then classify the lesion inside the ROI. Conventional classification backbones, such as VGG16 and ResNet50, can achieve promising classification results with no ROI requirement. But these models lack interpretability, thus restricting their use in clinical practice. In this study, we propose a novel ROI-free model for breast cancer diagnosis in ultrasound images with interpretable feature representations. We leverage the anatomical prior knowledge that malignant and benign tumors have different spatial relationships between different tissue layers, and propose a HoVer-Transformer to formulate this prior knowledge. The proposed HoVer-Trans block extracts the inter- and intra-layer spatial information horizontally and vertically. We conduct and release an open dataset GDPH&SYSUCC for breast cancer diagnosis in BUS. The proposed model is evaluated in three datasets by comparing with four CNN-based models and two vision transformer models via five-fold cross validation. It achieves state-of-the-art classification performance with the best model interpretability. In the meanwhile, our proposed model outperforms two senior sonographers on the breast cancer diagnosis when only one BUS image is given.
翻译:超声波分析是乳腺癌诊断的一个重要常规检查,原因是其非侵入性、无辐射和低成本特性。然而,乳腺癌诊断的准确性仍因其内在局限性而有限。如果我们能够精确地通过乳房超声图像诊断乳腺癌,那么乳腺癌诊断的准确性仍有限。许多基于学习的计算机辅助诊断方法已经提出了实现乳腺癌诊断/感官分类的建议。然而,其中多数方法需要先进行检测前的ROI,然后对ROI内部的损伤进行分类。常规分类主干,如VGG16和ResNet50, 可以在没有ROI要求的情况下实现有希望的分类结果。但这些模型缺乏可解释性,从而限制了其在临床实践中的使用。在本研究中,我们提出了一个新的无乳腺癌诊断模型,用于超声波图像的诊断和可解释性格描述。我们利用了先前的解剖析学知识,即恶性肿瘤和良性肿瘤在不同的组织层之间有着不同的空间关系,并提议用HOVER-Transfer 来构建先前的知识。拟议中的HVER-Trading Creal-deal模型模型模型将两次通过S-SIS-SIS-Ial ASyal数据进行直观和B-I-deal-deal-deal-deal-dal-deal-dealal dalalal-devial disaldal disal disal disal dal-deal disaldaldal dal disal disal disal disal disaldal disal vial vialvialvialdaldaldal vialdaldaldaldaldaldald dvialdalddaldaldaldaldaldaldaldaldaldaldaldaldaldaldal exaldaldaldaldaldal ex 。我们提出, 3 和BDaldaldaldaldaldaldaldaldaldaldald daldaldaldaldal d d d d d daldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald