The proliferation of Web services makes it difficult for users to select the most appropriate one among numerous functionally identical or similar service candidates. Quality-of-Service (QoS) describes the non-functional characteristics of Web services, and it has become the key differentiator for service selection. However, users cannot invoke all Web services to obtain the corresponding QoS values due to high time cost and huge resource overhead. Thus, it is essential to predict unknown QoS values. Although various QoS prediction methods have been proposed, few of them have taken outliers into consideration, which may dramatically degrade the prediction performance. To overcome this limitation, we propose an outlier-resilient QoS prediction method in this paper. Our method utilizes Cauchy loss to measure the discrepancy between the observed QoS values and the predicted ones. Owing to the robustness of Cauchy loss, our method is resilient to outliers. We further extend our method to provide time-aware QoS prediction results by taking the temporal information into consideration. Finally, we conduct extensive experiments on both static and dynamic datasets. The results demonstrate that our method is able to achieve better performance than state-of-the-art baseline methods.
翻译:网络服务的扩散使得用户难以在众多功能上完全相同或类似的服务对象中选择最合适的服务对象。服务质量(Qos)描述网络服务不起作用的特点,它已成为选择服务的关键差异。然而,由于时间成本高、资源管理费用巨大,用户无法利用所有网络服务获得相应的QOS值。因此,必须预测未知的QOS值。虽然提出了各种Qos预测方法,但很少有人会考虑可能大幅降低预测性能的外部用户。为了克服这一限制,我们建议了本文中一种超常弹性的Qos预测方法。我们的方法利用了巨大的损失来衡量观察到的Qos值与预测值之间的差异。由于损失的强劲,我们的方法能够适应外部用户。我们进一步扩展了我们的方法,通过考虑时间信息来提供有时间意识的Qos预测结果。最后,我们在静态和动态数据集上进行了广泛的实验。我们的方法利用了巨大的损失来衡量所观察到的Qos值与预测值之间的差异。我们的方法比能够实现的状态基准方法要好。结果表明我们的方法是能够实现的状态。