The abundance of clouds, located both spatially and temporally, often makes remote sensing (RS) applications with optical images difficult or even impossible to perform. Traditional cloud removing techniques have been studied for years, and recently, Machine Learning (ML)-based approaches have also been considered. In this manuscript, a novel method for the restoration of clouds-corrupted optical images is presented, able to generate the whole optical scene of interest, not only the cloudy pixels, and based on a Joint Data Fusion paradigm, where three deep neural networks are hierarchically combined. Spatio-temporal features are separately extracted by a conditional Generative Adversarial Network (cGAN) and by a Convolutional Long Short-Term Memory (ConvLSTM), from Synthetic Aperture Radar (SAR) data and optical time-series of data respectively, and then combined with a U-shaped network. The use of time-series of data has been rarely explored in the state of the art for this peculiar objective, and moreover existing models do not combine both spatio-temporal domains and SAR-optical imagery. Quantitative and qualitative results have shown a good ability of the proposed method in producing cloud-free images, by also preserving the details and outperforming the cGAN and the ConvLSTM when individually used. Both the code and the dataset have been implemented from scratch and made available to interested researchers for further analysis and investigation.


翻译:大量云层分布在空间和时间上,云层丰富,常常使遥感应用难以或甚至无法应用光学图像,传统云清除技术已经研究多年,最近还考虑了机器学习法。本手稿介绍了恢复云层干扰光学图像的新颖方法,不仅能够生成云层像素,而且能够生成整个光学景,不仅产生云状像素,并且基于一个联合数据聚合模式,即三个深层神经网络按等级组合在一起。一个有条件的创基因反向图像网络(GAN)和一个革命性长期短期记忆(CONLSTM)分别抽调,最近还考虑了机器学习法。本手稿中介绍了一个恢复云层干扰光学光学图像的新方法,不仅能够生成云状像,而且能够生成整个光学场景,不仅云状像素,而且在三个深层神经网络中很少对时间序列的使用进行探索,此外,现有的模型并没有将空间-时空空间-时空域和科学-科学-视觉图像结合起来。为了进一步保持目前使用的云状和定性分析,在使用CRA模型中,还使用了一种良好和定性分析方法,从而进一步使用了为CRSU的云层和定性和定性和定性分析,从而进一步使用了为个人使用的计算和定性-CRFLSBSDLMLM结果而使用了一种良好的分析。

0
下载
关闭预览

相关内容

带条件约束的GAN,在生成模型(D)和判别模型(G)的建模中均引入条件变量y(conditional variable y),使用额外信息y对模型增加条件,可以指导数据生成过程。
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员