We prove that each eigenvalue l(k) of the Kirchhoff Laplacian K of a graph or quiver is bounded above by d(k)+d(k-1) for all k in {1,...,n}. Here l(1),...,l(n) is a non-decreasing list of the eigenvalues of K and d(1),..,d(n) is a non-decreasing list of vertex degrees with the additional assumption d(0)=0. We also prove that in general the weak Brouwer-Haemers lower bound d(k) + (n-k) holds for all eigenvalues l(k) of the Kirchhoff matrix of a quiver.
翻译:我们证明,图或角形图的Kirchhoff Laplacian K 的每个egenvalue l(k) 受{1,...,n}所有 k 的 d(k)+d(k-1) 的约束。 这里 l(1),...,l(n) 是K和d(1).d(n) 的egenvalue的非降序列表。 d(n) 是一份非降序的顶部温度列表, 加上额外的假设 d( 0)=0。 我们还证明, 一般而言, 弱的Brouwer- Haemers 较低约束 d(k) + (n-k) 持有基尔赫霍夫基尔赫夫基尔赫夫基弗矩阵的所有egenvalue l(k) 。