More than 5 million children under five years die from largely preventable or treatable medical conditions every year, with an overwhelmingly large proportion of deaths occurring in under-developed countries with low vaccination uptake. One of the United Nations' sustainable development goals (SDG 3) aims to end preventable deaths of newborns and children under five years of age. We focus on Nigeria, where the rate of infant mortality is appalling. We collaborate with HelpMum, a large non-profit organization in Nigeria to design and optimize the allocation of heterogeneous health interventions under uncertainty to increase vaccination uptake, the first such collaboration in Nigeria. Our framework, ADVISER: AI-Driven Vaccination Intervention Optimiser, is based on an integer linear program that seeks to maximize the cumulative probability of successful vaccination. Our optimization formulation is intractable in practice. We present a heuristic approach that enables us to solve the problem for real-world use-cases. We also present theoretical bounds for the heuristic method. Finally, we show that the proposed approach outperforms baseline methods in terms of vaccination uptake through experimental evaluation. HelpMum is currently planning a pilot program based on our approach to be deployed in the largest city of Nigeria, which would be the first deployment of an AI-driven vaccination uptake program in the country and hopefully, pave the way for other data-driven programs to improve health outcomes in Nigeria.
翻译:每年有500多万五岁以下儿童死于基本可预防或可治疗的医疗条件,其中绝大多数死亡发生在接种率低的欠发达国家。联合国可持续发展目标(SDG 3)之一(SDG 3)旨在终止新生儿和5岁以下儿童可预防的死亡。我们关注尼日利亚,那里的婴儿死亡率令人震惊。我们与尼日利亚的一个大型非营利组织HelpMum合作,在尼日利亚设计和优化分配不确定的多种保健干预措施以增加接种率,这是尼日利亚的第一个此类合作。我们的框架ADVISER: AI-Driven 疫苗干预优化方案基于一个整形线性方案,旨在尽量扩大接种成功率的累积率。我们的最佳方案在实践上是难以操作的。我们提出了一种超理论方法,使我们能够解决真实世界的婴儿死亡率问题。我们还提出了超常方法的理论界限。最后,我们表明,拟议的方法在通过实验性评估提高接种率方面超过了基准方法。HelpMum目前正在规划一个试点方案,以我们的方法为基础,力求最大限度地增加接种疫苗的累积概率。我们的最佳方案是尼日利亚在最大城市部署的AI驱动性方案。