Minimizing traffic accidents between vehicles and pedestrians is one of the primary research goals in intelligent transportation systems. To achieve the goal, pedestrian orientation recognition and prediction of pedestrian's crossing or not-crossing intention play a central role. Contemporary approaches do not guarantee satisfactory performance due to limited field-of-view, lack of generalization, and high computational complexity. To overcome these limitations, we propose a real-time predictive pedestrian collision warning service (P2CWS) for two tasks: pedestrian orientation recognition (100.53 FPS) and intention prediction (35.76 FPS). Our framework obtains satisfying generalization over multiple sites because of the proposed site-independent features. At the center of the feature extraction lies 3D pose estimation. The 3D pose analysis enables robust and accurate recognition of pedestrian orientations and prediction of intentions over multiple sites. The proposed vision framework realizes 89.3% accuracy in the behavior recognition task on the TUD dataset without any training process and 91.28% accuracy in intention prediction on our dataset achieving new state-of-the-art performance. To contribute to the corresponding research community, we make our source codes public which are available at https://github.com/Uehwan/VisionForPedestrian
翻译:尽量减少车辆和行人之间的交通事故是智能运输系统的首要研究目标之一。为了实现这一目的,行人定向识别和预测行人跨越或无意跨行人的目的具有中心作用。当代方法不能保证由于视野有限、缺乏概括性和高计算复杂性而令人满意的业绩。为了克服这些限制,我们提议为两个任务提供实时预测行人碰撞警告服务(P2CWS):行人定向识别(100.53 FPS)和意向预测(35.76 FPS)。我们的框架在多个地点取得了令人满意的普遍化,因为拟议的地貌独立特征特点。在地貌采掘中心,3D构成估计。3D构成分析使得对行人方向的可靠和准确认识以及对多个地点的意向的预测得以实现。拟议的远景框架实现了TUD数据集行为识别任务的89.3%的准确性,而没有经过任何培训过程,也没有实现我们数据集的意向预测的91.28%的准确性。为了对相应的研究界作出贡献,我们把源代码公布在 https://giushubuscom/Forion。