Real-time point cloud processing is fundamental for lots of computer vision tasks, while still challenged by the computational problem on resource-limited edge devices. To address this issue, we implement XNOR-Net-based binary neural networks (BNNs) for an efficient point cloud processing, but its performance is severely suffered due to two main drawbacks, Gaussian-distributed weights and non-learnable scale factor. In this paper, we introduce point-wise operations based on Expectation-Maximization (POEM) into BNNs for efficient point cloud processing. The EM algorithm can efficiently constrain weights for a robust bi-modal distribution. We lead a well-designed reconstruction loss to calculate learnable scale factors to enhance the representation capacity of 1-bit fully-connected (Bi-FC) layers. Extensive experiments demonstrate that our POEM surpasses existing the state-of-the-art binary point cloud networks by a significant margin, up to 6.7 %.
翻译:实时点云处理对于许多计算机愿景任务至关重要, 但仍然受到资源有限边缘设备计算问题的挑战。 为了解决这一问题, 我们实施了 XNOR- Net 双神经网络( BNNS), 以高效点云处理, 但是其性能由于两个主要缺陷而严重受损, 高山分布的重量和不可忽略的规模因素。 在本文中, 我们引入了基于期望- 最大化( POEM) 的点点操作, 用于高效点云处理。 EM 算法可以有效地限制稳健双式分布的重量。 我们引导了精心设计的重建损失, 以计算可学习的比重系数, 以提升一比全连接层( Bi-FC) 的代表性能力。 广泛的实验表明我们的POEM 大大超过现有最先进的二点云网络, 高达6. 7% 。