Real-time point cloud processing is fundamental for lots of computer vision tasks, while still challenged by the computational problem on resource-limited edge devices. To address this issue, we implement XNOR-Net-based binary neural networks (BNNs) for an efficient point cloud processing, but its performance is severely suffered due to two main drawbacks, Gaussian-distributed weights and non-learnable scale factor. In this paper, we introduce point-wise operations based on Expectation-Maximization (POEM) into BNNs for efficient point cloud processing. The EM algorithm can efficiently constrain weights for a robust bi-modal distribution. We lead a well-designed reconstruction loss to calculate learnable scale factors to enhance the representation capacity of 1-bit fully-connected (Bi-FC) layers. Extensive experiments demonstrate that our POEM surpasses existing the state-of-the-art binary point cloud networks by a significant margin, up to 6.7 %.


翻译:实时点云处理对于许多计算机愿景任务至关重要, 但仍然受到资源有限边缘设备计算问题的挑战。 为了解决这一问题, 我们实施了 XNOR- Net 双神经网络( BNNS), 以高效点云处理, 但是其性能由于两个主要缺陷而严重受损, 高山分布的重量和不可忽略的规模因素。 在本文中, 我们引入了基于期望- 最大化( POEM) 的点点操作, 用于高效点云处理。 EM 算法可以有效地限制稳健双式分布的重量。 我们引导了精心设计的重建损失, 以计算可学习的比重系数, 以提升一比全连接层( Bi-FC) 的代表性能力。 广泛的实验表明我们的POEM 大大超过现有最先进的二点云网络, 高达6. 7% 。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
专知会员服务
159+阅读 · 2020年1月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2022年1月31日
Arxiv
4+阅读 · 2020年3月27日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
已删除
将门创投
8+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Jointly Improving Summarization and Sentiment Classification
黑龙江大学自然语言处理实验室
3+阅读 · 2018年6月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员