Spectral embedding of network adjacency matrices often produces node representations living approximately around low-dimensional submanifold structures. In particular, hidden substructure is expected to arise when the graph is generated from a latent position model. Furthermore, the presence of communities within the network might generate community-specific submanifold structures in the embedding, but this is not explicitly accounted for in most statistical models for networks. In this article, a class of models called latent structure block models (LSBM) is proposed to address such scenarios, allowing for graph clustering when community-specific one dimensional manifold structure is present. LSBMs focus on a specific class of latent space model, the random dot product graph (RDPG), and assign a latent submanifold to the latent positions of each community. A Bayesian model for the embeddings arising from LSBMs is discussed, and shown to have a good performance on simulated and real world network data. The model is able to correctly recover the underlying communities living in a one-dimensional manifold, even when the parametric form of the underlying curves is unknown, achieving remarkable results on a variety of real data.


翻译:网络外观嵌入网络的相邻性矩阵往往产生大约围绕低维次元结构的节点表示。 特别是, 当图形由潜伏位置模型生成时, 预计将会出现隐藏的子结构。 此外, 网络内社区的存在可能会在嵌入过程中产生社区特有的子层结构, 但大多数网络的统计模型中并未明确说明这一点。 在本篇文章中, 提出了一组称为潜伏结构块模型( LSBM ) 的模型, 以应对这些假设情景, 允许在社区特有的一维多元结构出现时进行图形组合。 LSBMS 侧重于一个特定的潜伏空间模型, 随机点产品图( RDPG), 并给每个社区的潜在位置指定一个潜在的子层。 讨论来自 LSBMS 的嵌入模式, 并显示其在模拟和真实世界网络数据上表现良好。 该模型能够正确恢复生活在一维方形中的基本社区, 即使基本曲线的对称形式未知, 在各种真实数据上取得显著的结果 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
70+阅读 · 2021年5月28日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
TensorFlow Lite指南实战《TensorFlow Lite A primer》,附48页PPT
专知会员服务
68+阅读 · 2020年1月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
4+阅读 · 2020年10月18日
Arxiv
8+阅读 · 2019年5月20日
VIP会员
相关资讯
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员