Traditional tabular classifiers provide explainable decision-making with interpretable features(concepts). However, using their explainability in vision tasks has been limited due to the pixel representation of images. In this paper, we design Img2Tabs that classify images by concepts to harness the explainability of tabular classifiers. Img2Tabs encode image pixels into tabular features by StyleGAN inversion. Since not all of the resulting features are class-relevant or interpretable due to their generative nature, we expect Img2Tab classifiers to discover class-relevant concepts automatically from the StyleGAN features. Thus, we propose a novel method using the Wasserstein-1 metric to quantify class-relevancy and interpretability simultaneously. Using this method, we investigate whether important features extracted by tabular classifiers are class-relevant concepts. Consequently, we determine the most effective classifier for Img2Tabs in terms of discovering class-relevant concepts automatically from StyleGAN features. In evaluations, we demonstrate concept-based explanations through importance and visualization. Img2Tab achieves top-1 accuracy that is on par with CNN classifiers and deep feature learning baselines. Additionally, we show that users can easily debug Img2Tab classifiers at the concept level to ensure unbiased and fair decision-making without sacrificing accuracy.
翻译:传统的表格分类器提供了可解释的、具有可解释性特征(概念)的决策,但由于图像的像素表示,它们在视觉任务中的可解释性使用受到限制。在本文中,我们设计了Img2Tabs,通过StyleGAN反演将图像像素编码成表格特征来对概念进行分类,以发挥表格分类器的可解释性。由于生成的特性的本质,不是所有的特性都与类相关或具有可解释性,因此我们期望Img2Tab分类器通过StylyGAN特征自动发现类相关的概念。因此,我们提出了一种新颖的方法,使用Wasserstein-1度量同时量化类相关性和可解释性。通过这种方法,我们探讨了通过表格分类器提取的重要特征是否是类相关概念。因此,我们确定了在从StyleGAN特征中自动发现类相关概念方面最有效的Img2Tabs分类器。在评估中,我们通过重要性和可视化展示了基于概念的解释。Img2Tab达到与CNN分类器和深度特征学习基线相当的Top-1准确率。此外,我们展示了用户如何轻松调试Img2Tab分类器以确保无偏见和公正的决策,而不会牺牲准确性。