The patent citation network is a complex and dynamic system that reflects the diffusion of knowledge and innovation across different fields of technology. With this work, we aim to analyze such citation networks by developing a novel approach that leverages Relational Event Models (REMs) and Machine learning concepts. Overcoming the main limitations of REMs on analyzing large sparse networks, we propose a Deep Relational Event Additive Model (DREAM) that models the relationships between cited and citing patents as events that occur over time, capturing the dynamic nature of the patent citation network. Each predictor in the generative model is assumed to have a non-linear behavior, which has been modeled through a B-spline approach that allowed us to capture such smooth effects. By estimating the model through a stochastic gradient descent approach, we were able to efficiently estimate the parameters of the DREAM and identify the key factors that drive the network dynamics. Additionally, our spline approach allowed us to capture complex relationships between predictors through elaborate interaction effects, leading to a more accurate and comprehensive interpretation of the underlying mechanisms of the patent citation network. Our analysis revealed several interesting insights, such as the identification of time windows in which citations are more likely to happen and the relevancy of the increasing number of citations received per patent. Overall, our results demonstrate the potential of the DREAM in capturing complex dynamics that arise in a large sparse network, maintaining the features and the interpretability for which REMs are mostly famous.


翻译:专利引证网络是一个复杂和动态的系统,反映了不同技术领域知识和创新的传播。通过这项工作,我们的目标是通过开发一种利用关系事件模型和机器学习概念的新颖方法分析这种引证网络。克服REM在分析大量稀疏网络方面的主要局限性,我们提出一个深关系事件补充模型(DREAM),将所引用和引用专利之间的关系作为长期事件进行模型,捕捉专利引用网络的动态性质。基因模型中的每个预测者都假定有非线性行为,这种行为通过B-波纹方法进行模拟,使我们能够捕捉这种光效果。通过随机偏差梯度下降方法对模型进行估计,我们能够有效地估计DREAM的参数并确定驱动网络动态的关键因素。此外,我们的样板方法使我们能够通过复杂的互动效应来捕捉预测者之间的复杂关系,导致对专利引网基本机制进行更准确和全面的解释。我们的分析揭示了多种令人感兴趣的模型的可变性特征,通过这种可理解性,从总体上看得更深的网络中看出了我们所了解的动态,从多少次中可以看出,从多少次获得的专利检索中看出,从多少次中看出,从多少次中可以看出,从多少次得到的图像中看出,从多少次得到的顺序看出,从多少了解。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
41+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
22+阅读 · 2022年2月24日
Arxiv
35+阅读 · 2020年1月2日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员