We use results from communication complexity, both new and old ones, to prove lower bounds for problems on unambiguous finite automata (UFAs). We show: (1) Complementing UFAs with $n$ states requires in general at least $n^{\tilde{\Omega}(\log n)}$ states, improving on a bound by Raskin. (2) There are languages $L_n$ such that both $L_n$ and its complement are recognized by NFAs with $n$ states but any UFA that recognizes $L_n$ requires $n^{\Omega(\log n)}$ states, refuting a conjecture by Colcombet on separation.
翻译:我们用新的和旧的通讯复杂程度的结果来证明对明确限定的自治(UFAs)问题的影响较低。 我们显示:(1) 用美元作为UFA的补充,一般来说至少需要美元(gn)美元(log n)美元(n)美元(n)美元(n)美元),在Raskin的束缚上有所改进。 (2) 有语言(l_n)美元(n),因此美元(n)和美元(n)都由NFAs承认,但任何承认美元(n)的UFA要求美元(n)美元(n)美元(n)的国家,在分离时反驳Colcombet的猜测。