Mixed-integer linear programs (MILPs) are widely used in artificial intelligence and operations research to model complex decision problems like scheduling and routing. Designing such programs however requires both domain and modelling expertise. In this paper, we study the problem of acquiring MILPs from contextual examples, a novel and realistic setting in which examples capture solutions and non-solutions within a specific context. The resulting learning problem involves acquiring continuous parameters -- namely, a cost vector and a feasibility polytope -- but has a distinctly combinatorial flavor. To solve this complex problem, we also contribute MISSLE, an algorithm for learning MILPs from contextual examples. MISSLE uses a variant of stochastic local search that is guided by the gradient of a continuous surrogate loss function. Our empirical evaluation on synthetic data shows that MISSLE acquires better MILPs faster than alternatives based on stochastic local search and gradient descent.


翻译:在人工智能和操作研究中,混合内聚线性程序(MILPs)被广泛用于人工智能和操作研究,以模拟诸如时间安排和路线等复杂的决策问题。设计这类程序需要领域和建模方面的专门知识。在本文中,我们研究从背景实例中获取MILP的问题,这是一个新颖和现实的环境,其中范例在特定背景下捕捉解决方案和非解决方案。由此产生的学习问题涉及获得连续参数 -- -- 即成本矢量和可行性多功能 -- --,但具有明显的组合性口味。为了解决这一复杂的问题,我们还提供了MISSLE,这是从背景实例中学习MILPs的一种算法。MISSLE使用了一种由连续代位损失函数梯度指导的随机本地搜索的变式。我们对合成数据的经验评估表明,MISSLE公司获得的MILPs比基于随机本地搜索和梯度的替代物更快。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员