Mixed-integer linear programs (MILPs) are widely used in artificial intelligence and operations research to model complex decision problems like scheduling and routing. Designing such programs however requires both domain and modelling expertise. In this paper, we study the problem of acquiring MILPs from contextual examples, a novel and realistic setting in which examples capture solutions and non-solutions within a specific context. The resulting learning problem involves acquiring continuous parameters -- namely, a cost vector and a feasibility polytope -- but has a distinctly combinatorial flavor. To solve this complex problem, we also contribute MISSLE, an algorithm for learning MILPs from contextual examples. MISSLE uses a variant of stochastic local search that is guided by the gradient of a continuous surrogate loss function. Our empirical evaluation on synthetic data shows that MISSLE acquires better MILPs faster than alternatives based on stochastic local search and gradient descent.
翻译:在人工智能和操作研究中,混合内聚线性程序(MILPs)被广泛用于人工智能和操作研究,以模拟诸如时间安排和路线等复杂的决策问题。设计这类程序需要领域和建模方面的专门知识。在本文中,我们研究从背景实例中获取MILP的问题,这是一个新颖和现实的环境,其中范例在特定背景下捕捉解决方案和非解决方案。由此产生的学习问题涉及获得连续参数 -- -- 即成本矢量和可行性多功能 -- --,但具有明显的组合性口味。为了解决这一复杂的问题,我们还提供了MISSLE,这是从背景实例中学习MILPs的一种算法。MISSLE使用了一种由连续代位损失函数梯度指导的随机本地搜索的变式。我们对合成数据的经验评估表明,MISSLE公司获得的MILPs比基于随机本地搜索和梯度的替代物更快。