Pandemics often cause dramatic losses of human lives and impact our societies in many aspects such as public health, tourism, and economy. To contain the spread of an epidemic like COVID-19, efficient and effective contact tracing is important, especially in indoor venues where the risk of infection is higher. In this work, we formulate and study a novel query called Indoor Contact Query (ICQ) over raw, uncertain indoor positioning data that digitalizes people's movements indoors. Given a query object o, e.g., a person confirmed to be a virus carrier, an ICQ analyzes uncertain indoor positioning data to find objects that most likely had close contact with o for a long period of time. To process ICQ, we propose a set of techniques. First, we design an enhanced indoor graph model to organize different types of data necessary for ICQ. Second, for indoor moving objects, we devise methods to determine uncertain regions and to derive positioning samples missing in the raw data. Third, we propose a query processing framework with a close contact determination method, a search algorithm, and the acceleration strategies. We conduct extensive experiments on synthetic and real datasets to evaluate our proposals. The results demonstrate the efficiency and effectiveness of our proposals.
翻译:在流行病爆发期间,疫情往往会导致人类生命的巨大损失,并在许多方面如公共卫生、旅游和经济等方面影响我们的社会。为了遏制像COVID-19这样的流行病的传播,尤其是在室内环境中风险更高的场所,高效和有效的接触追踪非常重要。在这项工作中,我们通过数字化室内人员活动,并研究一个新的查询 Indoor Contact Query (ICQ)来处理原始、不确定的室内定位数据,以查找与被确认为病毒携带者的对象(例如,一个人)最有可能长时间接触的对象。为了处理ICQ,我们提出了一组技术。首先,我们设计了一个增强的室内图形模型,以组织ICQ所需的不同类型的数据。其次,对于室内运动对象,我们设计了确定不确定区域和导出原始数据中丢失的定位样本的方法。第三,我们提出了一个查询处理框架,其中包括接触决策方法,搜索算法和加速策略。我们在合成和真实数据集上进行了广泛的实验,以评估我们的提议的效率和有效性。结果证明了我们提议的方法的高效性和有效性。