Renting servers in the cloud is a generalization of the bin packing problem, motivated by job allocation to servers in cloud computing applications. Jobs arrive in an online manner, and need to be assigned to servers; their duration and size are known at the time of arrival. There is an infinite supply of identical servers, each having one unit of computational capacity per unit of time. A server can be rented at any time and continues to be rented until all jobs assigned to it finish. The cost of an assignment is the sum of durations of rental periods of all servers. The goal is to assign jobs to servers to minimize the overall cost while satisfying server capacity constraints. We focus on analyzing two natural algorithms, NextFit and FirstFit, for the case of jobs of equal duration. It is known that the competitive ratio of NextFit and FirstFit are at most 3 and 4 respectively for this case. We prove a tight bound of 2 on the competitive ratio of NextFit. For FirstFit, we establish a lower bound of 2.519 on the competitive ratio, even when jobs have only two distinct arrival times. For the case when jobs have arrival times 0 and 1 and duration 2, we show a lower bound of 1.89 and an upper bound of 2 on the strict competitive ratio of FirstFit. Finally, using the weight function technique, we obtain stronger results for the case of uniform servers.
翻译:云层中租赁服务器是垃圾包装问题的概括化,其动机是将工作分配到云计算应用程序中的服务器上。工作以在线方式到达,需要分配到服务器;工作期限和规模在到达时是已知的。有无限的相同服务器供应,每个服务器都有单位单位的计算能力。服务器可以随时租赁,并继续租赁,直到分配给它的所有工作完成为止。任务费用是所有服务器的租赁期限的总和。任务的目的是为服务器分配工作,以便在满足服务器容量限制的同时最大限度地降低总成本。我们侧重于分析两种自然算法,即“下一个Fit”和“第一Fit”,以同等期限的工作为例。已知“下Fit”和“第一FiFit”的竞争性比重最多分别为3和4。我们证明,“下一个Fiet Fit”的竞争性比重大约为2,我们用最强的1和最强的2,我们用最强的SiFior Servicle 来显示“最强的1”和最强的Servicle 。