We present a fully automatic system that can produce high-fidelity, photo-realistic 3D digital human characters with a consumer RGB-D selfie camera. The system only needs the user to take a short selfie RGB-D video while rotating his/her head, and can produce a high quality reconstruction in less than 30 seconds. Our main contribution is a new facial geometry modeling and reflectance synthesis procedure that significantly improves the state-of-the-art. Specifically, given the input video a two-stage frame selection algorithm is first employed to select a few high-quality frames for reconstruction. A novel, differentiable renderer based 3D Morphable Model (3DMM) fitting method is then applied to recover facial geometries from multiview RGB-D data, which takes advantages of extensive data generation and perturbation. Our 3DMM has much larger expressive capacities than conventional 3DMM, allowing us to recover more accurate facial geometry using merely linear bases. For reflectance synthesis, we present a hybrid approach that combines parametric fitting and CNNs to synthesize high-resolution albedo/normal maps with realistic hair/pore/wrinkle details. Results show that our system can produce faithful 3D characters with extremely realistic details. Code and the constructed 3DMM is publicly available.


翻译:我们提出一个完全自动的系统,能够产生高忠诚度、照片现实的3D数字人类字符,并配有消费的 RGB-D 自相相机。这个系统只需要用户在旋转其头部时使用一个短短的自拍 RGB-D 视频,并且能够在不到30秒的时间内产生高质量的重建。我们的主要贡献是一个新的面部几何建模和反射合成程序,大大改进了最新技术。具体地说,由于输入视频,一个两阶段框架选择算法首先用于选择几个高质量的重建框架。一个基于3D 3D Morphable 模型(DMM)的新颖的、可辨别易变造型模型(DMM)安装方法,然后用于从多视图 RGB-D 数据中恢复面部地理特征,这需要大量数据生成和扰动的优势。我们的3DMM MM 的表达能力比常规的3D MM 综合程序要大得多得多,让我们仅用线性基础来恢复更准确的面部几度几度几何测量。为了反射合成,我们提出了一种混合方法,将准和CNN的配制合成高分辨率高分辨率高分辨率的平平平反光/D 3MMM/平面图与可展示真实的3-正制的3和可展示的直观的3-MMMM/正制成的3-正可展示的代码。

0
下载
关闭预览

相关内容

CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
6+阅读 · 2019年11月21日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
0+阅读 · 2020年11月28日
3D Face Modeling from Diverse Raw Scan Data
Arxiv
5+阅读 · 2019年2月13日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年11月21日
IEEE2018|An Accurate and Real-time 3D Tracking System for Robots
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员