The American winner-take-all congressional district system empowers politicians to engineer electoral outcomes by manipulating district boundaries. Existing computational solutions mostly focus on drawing unbiased maps by ignoring political and demographic input, and instead simply optimize for compactness. We claim that this is a flawed approach because compactness and fairness are orthogonal qualities, and introduce a scalable two-stage method to explicitly optimize for arbitrary piecewise-linear definitions of fairness. The first stage is a randomized divide-and-conquer column generation heuristic which produces an exponential number of distinct district plans by exploiting the compositional structure of graph partitioning problems. This district ensemble forms the input to a master selection problem to choose the districts to include in the final plan. Our decoupled design allows for unprecedented flexibility in defining fairness-aligned objective functions. The pipeline is arbitrarily parallelizable, is flexible to support additional redistricting constraints, and can be applied to a wide array of other regionalization problems. In the largest ever ensemble study of congressional districts, we use our method to understand the range of possible expected outcomes and the implications of this range on potential definitions of fairness.


翻译:美国的中胜者全拿州区制度授权政治家通过操纵地区边界来设计选举结果。现有的计算解决方案主要侧重于通过忽略政治和人口投入来绘制不偏倚的地图,而只是优化紧凑性。我们声称,这是一种有缺陷的方法,因为紧凑性和公平性是正统的,并引入了可伸缩的两阶段方法,以明确优化任意的片段线性公平定义。第一阶段是随机化的分裂和征服柱体生成超常性,它通过利用图表分割问题的构成结构来产生大量不同的地区计划。这个地区共聚性为选择地区选择问题提供了投入,以便选择最终计划包括的地区。我们拆分解的设计使得在界定公平目标功能方面具有前所未有的灵活性。管道可以任意平行,可以灵活地支持额外的重新划分限制,并可以应用于广泛的其他区域化问题。在国会地区进行有史以来最大的一系列共同研究时,我们使用的方法来理解可能取得的结果的范围以及这一范围对公平性定义的潜在影响。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
7+阅读 · 2019年10月15日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月27日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员