Robots have been critical instruments to space exploration by providing access to environments beyond human limitations. Jumping robot concepts are attractive solutions to negotiate complex terrain. However, among the engineering challenges to overcome to enable jumping robot concepts for sustained operation, reduction of mechanical failure modes is one of the most fundamental. This study set out to develop a jumping robot with focus on minimal actuation for reduced mechanism maintenance. We present the synthesis of a Sarrus-style linkage to constraint the system to a single translational degree of freedom without the use of typical synchronising gears. We delimit the present research to vertical solid jumps to assess the performance of the fundamental main-drive linkage. A laboratory demonstrator assists the transfer of theoretical concepts and approaches. The laboratory demonstrator performs jumps with 63% potential-to-kinetic energy conversion efficiency, with a theoretical maximum of 73%. Satisfactory operation opens up design optimisation and directional jump capability towards the development of a jumping robotic platform for space exploration.
翻译:机器人一直是空间探索的关键工具,它提供了进入人类所限环境的通道。跳机器人概念是谈判复杂地形的有吸引力的解决办法。然而,在需要克服的工程挑战中,减少机械故障模式是最根本的。这项研究旨在开发跳跃机器人,重点是为降低机能维护而进行最小的激活。我们介绍了Sarrus式连接的合成,将系统限制在单一的翻译自由度,而不使用典型的同步齿轮。我们将目前的研究划分为垂直的固体跳跃,以评估基本主驾驶连接的性能。实验室示范器协助理论概念和办法的转移。实验室演示器以63%的潜在动力转换能量效率进行跳跃,理论上最高为73%。 卫星操作开启了设计优化和定向跳跃能力,以开发空间探索的跳跃机器人平台。