Unreliable predictions can occur when using artificial intelligence (AI) systems with negative consequences for downstream applications, particularly when employed for decision-making. Conformal prediction provides a model-agnostic framework for uncertainty quantification that can be applied to any dataset, irrespective of its distribution, post hoc. In contrast to other pixel-level uncertainty quantification methods, conformal prediction operates without requiring access to the underlying model and training dataset, concurrently offering statistically valid and informative prediction regions, all while maintaining computational efficiency. In response to the increased need to report uncertainty alongside point predictions, we bring attention to the promise of conformal prediction within the domain of Earth Observation (EO) applications. To accomplish this, we assess the current state of uncertainty quantification in the EO domain and found that only 20% of the reviewed Google Earth Engine (GEE) datasets incorporated a degree of uncertainty information, with unreliable methods prevalent. Next, we introduce modules that seamlessly integrate into existing GEE predictive modelling workflows and demonstrate the application of these tools for datasets spanning local to global scales, including the Dynamic World and Global Ecosystem Dynamics Investigation (GEDI) datasets. These case studies encompass regression and classification tasks, featuring both traditional and deep learning-based workflows. Subsequently, we discuss the opportunities arising from the use of conformal prediction in EO. We anticipate that the increased availability of easy-to-use implementations of conformal predictors, such as those provided here, will drive wider adoption of rigorous uncertainty quantification in EO, thereby enhancing the reliability of uses such as operational monitoring and decision making.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
20+阅读 · 2021年5月1日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员