We address the estimation of conditional average treatment effects (CATEs) when treatments are graph-structured (e.g., molecular graphs of drugs). Given a weak condition on the effect, we propose a plug-in estimator that decomposes CATE estimation into separate, simpler optimization problems. Our estimator (a) isolates the causal estimands (reducing regularization bias), and (b) allows one to plug in arbitrary models for learning. In experiments with small-world and molecular graphs, we show that our approach outperforms prior approaches and is robust to varying selection biases. Our implementation is online.
翻译:当治疗是图形结构化的(例如药物分子图)时,我们处理对有条件平均治疗效果的估计(CATEs ) 。 鉴于这种效果的薄弱条件,我们提议一个插座估计器,将CATE估计分解成单独、简单的优化问题。我们的估计器 (a) 分离因果估计值(降低正规化偏差 ), (b) 允许一个人插入任意的学习模式。 在使用小世界和分子图的实验中,我们展示了我们的方法优于先前的方法,并且能够应对不同的选择偏差。我们的实施是在线的。