The information detection of complex systems from data is currently undergoing a revolution, driven by the emergence of big data and machine learning methodology. Discovering governing equations and quantifying dynamical properties of complex systems are among central challenges. In this work, we devise a nonparametric approach to learn the relative entropy rate from observations of stochastic differential equations with different drift functions.The estimator corresponding to the relative entropy rate then is presented via the Gaussian process kernel theory. Meanwhile, this approach enables to extract the governing equations. We illustrate our approach in several examples. Numerical experiments show the proposed approach performs well for rational drift functions, not only polynomial drift functions.


翻译:通过数据对复杂系统进行信息探测目前正在经历一场革命,其动力是大数据和机器学习方法的出现。发现管理方程式和量化复杂系统的动态特性是中心挑战之一。在这项工作中,我们设计了一种非参数方法,从观测具有不同漂移功能的随机差异方程式的观测中学习相对的倍增率。与当时相对的倍增率相应的估计值通过高西亚进程内核理论提出。与此同时,这一方法可以提取调节方程式。我们用几个例子来说明我们的方法。数字实验表明,拟议方法在合理漂移功能方面运行良好,而不仅仅是多数值漂移功能。

0
下载
关闭预览

相关内容

相对熵(relative entropy),又被称为Kullback-Leibler散度(Kullback-Leibler divergence)或信息散度(information divergence),是两个概率分布(probability distribution)间差异的非对称性度量。在在信息理论中,相对熵等价于两个概率分布的信息熵(Shannon entropy)的差值.
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
百页Python编程指南
专知会员服务
69+阅读 · 2021年2月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
106+阅读 · 2021年8月27日
百页Python编程指南
专知会员服务
69+阅读 · 2021年2月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
专知会员服务
51+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员