Linear programs (LPs) can be solved by polynomially many moves along the circuit direction improving the objective the most, so-called deepest-descent steps (dd-steps). Computing these steps is NP-hard (De Loera et al., arXiv, 2019), a consequence of the hardness of deciding the existence of an optimal circuit-neighbor (OCNP) on LPs with non-unique optima. We prove OCNP is easy under the promise of unique optima, but already $O(n^{1-\varepsilon})$-approximating dd-steps remains hard even for totally unimodular $n$-dimensional 0/1-LPs with a unique optimum. We provide a matching $n$-approximation.


翻译:线性程序(LPs)可以通过多步的多步移动在改善电路方向上改善目标的路径,即所谓的最深白步骤(d-d-steps)来解决。计算这些步骤是NP-hard(De Loera et al., arXiv, 2019),其原因是在非单一的opima 的LPs上决定最佳路路段邻居(OCNP)的难度很大。我们证明OCNP在独特的opima 的许诺下很容易,但已经是 $(n ⁇ 1-\ varepsilan} $(n ⁇ 1-\ varepsilan} $-coprocipl-d-steps d-steps 即使在完全不单单面的 $n$- expion 0/1-LPs 和独特的最佳情况下,我们提供匹配的 $n- approximation。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2020年3月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
0+阅读 · 2021年3月18日
Arxiv
0+阅读 · 2021年3月16日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员