We present a $380$-approximation algorithm for the Nash Social Welfare problem with submodular valuations. Our algorithm builds on and extends a recent constant-factor approximation for Rado valuations.


翻译:我们对纳什(Nash)的社会福利问题和亚模式估值提出了380美元的接近算法。 我们的算法基于并扩展了最近拉多(Rado)估值的不变因素近似值。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
3+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月4日
VIP会员
相关主题
相关资讯
图分类相关资源大列表
专知
11+阅读 · 2019年7月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
已删除
将门创投
3+阅读 · 2019年4月12日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Top
微信扫码咨询专知VIP会员