Accurately estimating a battery's state of health (SOH) helps prevent battery-powered applications from failing unexpectedly. With the superiority of reducing the data requirement of model training for new batteries, transfer learning (TL) emerges as a promising machine learning approach that applies knowledge learned from a source battery, which has a large amount of data. However, the determination of whether the source battery model is reasonable and which part of information can be transferred for SOH estimation are rarely discussed, despite these being critical components of a successful TL. To address these challenges, this paper proposes an interpretable TL-based SOH estimation method by exploiting the temporal dynamic to assist transfer learning, which consists of three parts. First, with the help of dynamic time warping, the temporal data from the discharge time series are synchronized, yielding the warping path of the cycle-synchronized time series responsible for capacity degradation over cycles. Second, the canonical variates retrieved from the spatial path of the cycle-synchronized time series are used for distribution similarity analysis between the source and target batteries. Third, when the distribution similarity is within the predefined threshold, a comprehensive target SOH estimation model is constructed by transferring the common temporal dynamics from the source SOH estimation model and compensating the errors with a residual model from the target battery. Through a widely-used open-source benchmark dataset, the estimation error of the proposed method evaluated by the root mean squared error is as low as 0.0034 resulting in a 77% accuracy improvement compared with existing methods.


翻译:精确估计电池电池的健康状况有助于防止电池驱动的应用出人意料地失败。随着减少新电池模型培训的数据要求的优势,转移学习(TL)作为一种有希望的机器学习方法,应用从来源电池中获取的知识,这种方法具有大量的数据。然而,确定源电池模型是否合理,以及哪些信息可以转让给电池电池的健康状况(SOH)很少讨论,尽管这是成功的TL34的关键组成部分。为了应对这些挑战,本文件建议采用基于TL的基于SOH的可解释性估算方法,利用时间动态来帮助转移学习,这包括三个部分。首先,在动态时间扭曲的帮助下,排放时间序列中的时间数据是同步的,导致周期性能力退化。第二,从循环同步时间序列的空间路径中检索到循环同步时间序列中的信息的一部分很少讨论。为了应对这些挑战,本文件建议采用基于TL的SOH的精确度估算方法,即利用时间动态模型的分布相似性,通过构建的SOHA的常规评估方法,通过构建的常规数据模型,通过构建的SMA的常规评估,通过构建的模型,通过构建的常规评估,通过构建的常规的模型,通过构建的SMA的常规的模型,通过构建的模型,通过构建的平价位值评估,通过构建的平差的模型,通过构建的模型的模型的模型,将现有的的模型的模型的模型的模型,将一个模拟的模型的测值的模型的测测测测算。

0
下载
关闭预览

相关内容

Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月1日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员