The fragmentation problem has extended from Android to different platforms, such as iOS, mobile web, and even mini-programs within some applications (app). In such a situation, recording and replaying test scripts is a popular automated mobile app testing approaches. But such approach encounters severe problems when crossing platforms. Different versions of the same app need to be developed to support different platforms relying on different platform supports. Therefore, mobile app developers need to develop and maintain test scripts for multiple platforms aimed at completely the same test requirements, greatly increasing testing costs. However, we discover that developers adopt highly similar user interface layouts for versions of the same app on different platforms. Such a phenomenon inspires us to replay test scripts from the perspective of similar UI layouts. We propose an image-driven mobile app testing framework, utilizing Widget Feature Matching and Layout Characterization Matching. We use computer vision technologies to perform UI feature comparison and layout hierarchy extraction on app screenshots to obtain UI structures with rich contextual information, including coordinates, relative relationship, etc. Based on acquired UI structures, we can form a platform-independent test script, and then locate the target widgets under test. Thus, the proposed framework non-intrusively replays test scripts according to a novel platform-independent test script model. We also design and implement a tool named LIT to devote the proposed framework into practice, based on which, we conduct an empirical study to evaluate the effectiveness and usability of the proposed testing framework. Results show that the overall replay accuracy reaches around 63.39% on Android (14% improvement over state-of-the-art approaches) and 21.83% on iOS (98% improvement over state-of-the-art approaches).


翻译:碎裂问题已经从Android扩大到不同的平台,如iOS、移动网络,甚至某些应用程序(应用程序)中的小型程序(应用程序)等。在这种情况下,记录和重新播放测试脚本是一种流行的自动移动应用程序测试方法。但这种方法在跨平台时遇到严重问题。同一应用程序的不同版本需要开发,以支持依赖不同平台支持的不同平台。因此,移动应用程序开发者需要开发和维护多个平台的测试脚本,以完全相同的测试要求为目的,大大提高测试成本。然而,我们发现开发者对不同平台上的同一应用程序的版本采用了非常相似的用户界面布局。在这种情况下,记录和重新播放测试脚本是一个广受欢迎的自动自动应用程序测试方法。我们使用计算机视觉技术对不同平台进行界面特征比较,在应用21个截图上设置结构结构图,包括协调、相对关系等。基于已获得的 UI 结构,我们可以从类似的 UI 测试布局测试脚本的角度重新设定测试脚本,然后根据IM 测试计划测试一个不依赖的脚本框架,然后根据IMB 测试一个我们提议的缩略图测试。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
113+阅读 · 2020年11月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
0+阅读 · 2021年4月11日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员