The exponential emergence of Field Programmable Gate Array (FPGA) has accelerated the research of hardware implementation of Deep Neural Network (DNN). Among all DNN processors, domain specific architectures, such as, Google's Tensor Processor Unit (TPU) have outperformed conventional GPUs. However, implementation of TPUs in reconfigurable hardware should emphasize energy savings to serve the green computing requirement. Voltage scaling, a popular approach towards energy savings, can be a bit critical in FPGA as it may cause timing failure if not done in an appropriate way. In this work, we present an ultra low power FPGA implementation of a TPU for edge applications. We divide the systolic-array of a TPU into different FPGA partitions, where each partition uses different near threshold (NTC) biasing voltages to run its FPGA cores. The biasing voltage for each partition is roughly calculated by the proposed static schemes. However, further calibration of biasing voltage is done by the proposed runtime scheme. Four clustering algorithms based on the minimum slack value of different design paths of Multiply Accumulates (MACs) study the partitioning of FPGA. To overcome the timing failure caused by NTC, the MACs which have higher minimum slack are placed in lower voltage partitions and the MACs have lower minimum slack path are placed in higher voltage partitions. The proposed architecture is simulated in a commercial platform : Vivado with Xilinx Artix-7 FPGA and academic platform VTR with 22nm, 45nm, 130nm FPGAs. The simulation results substantiate the implementation of voltage scaled TPU in FPGAs and also justifies its power efficiency.


翻译:现场可编程门阵列(FPGA)的快速出现加速了深神经网络硬件实施研究的步伐。 在全部 DNNN 处理器中,特定域架构(如谷歌的Tensor处理器(TPU))比常规的GPU(PTPU)要高得多。 然而,在可重新配置的硬件中实施TPU应强调节能以满足绿色计算要求。 电压缩放(一种对节能的流行方法)在FPGA中可能有点关键,因为如果不以适当的方式进行,可能会造成计时失败。 在这项工作中,我们展示了超低功率的 FPGA(DGA) 的 Systop-array(如谷地阵列等), 将TPGUPA的S-ray-array(如NTC) 用于不同的FPGA 的最小值, 微调压平流平流法的偏向性电压大约由提议的静态计划计算。但是,拟议的运行时制进一步校正校正其偏向电压的电压。,拟议的TRDFDA 平台的更低平流平极的平流图也是一个最低压 的压压 的压压压压压压压压压压压压压 。

0
下载
关闭预览

相关内容

FPGA:ACM/SIGDA International Symposium on Field-Programmable Gate Arrays。 Explanation:ACM/SIGDA现场可编程门阵列国际研讨会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/fpga/
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员