Hybrid Analysis and Modeling (HAM) is an emerging modeling paradigm which aims to combine physics-based modeling (PBM) and data-driven modeling (DDM) to create generalizable, trustworthy, accurate, computationally efficient and self-evolving models. Here, we introduce, justify and demonstrate a novel approach to HAM -- the Corrective Source Term Approach (CoSTA) -- which augments the governing equation of a PBM model with a corrective source term generated by a deep neural network (DNN). In a series of numerical experiments on one-dimensional heat diffusion, CoSTA is generally found to outperform comparable DDM and PBM models in terms of accuracy -- often reducing predictive errors by several orders of magnitude -- while also generalizing better than pure DDM. Due to its flexible but solid theoretical foundation, CoSTA provides a modular framework for leveraging novel developments within both PBM and DDM, and due to the interpretability of the DNN-generated source term within the PBM paradigm, CoSTA can be a potential door-opener for data-driven techniques to enter high-stakes applications previously reserved for pure PBM.
翻译:混合分析和建模(HAM)是一个新兴的模型模式,旨在将基于物理的模型(PBM)和数据驱动模型(DDM)结合起来,以创建通用的、可信赖的、准确的、计算高效的和自我演化的模式。在这里,我们引入、论证和展示一种新颖的HAM方法 -- -- 纠正源代码周期方法(CoSTA) -- -- 以深层神经网络生成的纠正源术语来强化PBM模型的治理方程式。 在关于单维热扩散的一系列数字实验中,CSTA通常在准确性方面优于可比较的DDM和PBM模型(DM)的模型 -- -- 往往将预测错误减少若干数量级 -- -- 同时也比纯DDDM更好。 CoSTA由于灵活而牢固的理论基础,为利用PBM和DDMM的新开发提供了模块,并且由于DNN所生成的源术语在PBM模式中可解释性,CSTA可以成为数据驱动技术进入以前保留用于纯PBM的高级应用的高级技术的门开关。