Large-scale pre-training has recently revolutionized vision-and-language (VL) research. Models such as LXMERT and UNITER have significantly lifted the state of the art over a wide range of VL tasks. However, the large number of parameters in such models hinders their application in practice. In parallel, work on the lottery ticket hypothesis (LTH) has shown that deep neural networks contain small matching subnetworks that can achieve on par or even better performance than the dense networks when trained in isolation. In this work, we perform the first empirical study to assess whether such trainable subnetworks also exist in pre-trained VL models. We use UNITER as the main testbed (also test on LXMERT and ViLT), and consolidate 7 representative VL tasks for experiments, including visual question answering, visual commonsense reasoning, visual entailment, referring expression comprehension, image-text retrieval, GQA, and NLVR$^2$. Through comprehensive analysis, we summarize our main findings as follows. ($i$) It is difficult to find subnetworks that strictly match the performance of the full model. However, we can find "relaxed" winning tickets at 50%-70% sparsity that maintain 99% of the full accuracy. ($ii$) Subnetworks found by task-specific pruning transfer reasonably well to the other tasks, while those found on the pre-training tasks at 60%/70% sparsity transfer universally, matching 98%/96% of the full accuracy on average over all the tasks. ($iii$) Besides UNITER, other models such as LXMERT and ViLT can also play lottery tickets. However, the highest sparsity we can achieve for ViLT is far lower than LXMERT and UNITER (30% vs. 70%). ($iv$) LTH also remains relevant when using other training methods (e.g., adversarial training).


翻译:大型培训前的大规模培训最近使视觉和语言(VL)研究发生革命性的变化。 LXMERT 和 UITER 等模型大大提升了VL任务中的最新水平。 然而,这些模型中的大量参数妨碍了它们的实际应用。 与此同时,彩票假设(LTH) 方面的工作表明,深神经网络包含小相匹配的子网络,这些小网络比隔离培训时密集的网络平均或甚至更好。在这项工作中,我们进行了第一次实证研究,以评估这些可训练的子网络是否也存在于经过训练的VL模型中。我们用UNITER作为主测试台(LXMET和VLTT的测试台)大幅提升了最新的最新水平,并合并了7项具有代表性的VLLL任务,包括视觉问题回答、视觉常识推理、视觉要求、表达理解前LQA和NLVR$2元。通过全面分析,我们总结了我们的主要结果如下。 (美元) 很难找到子网络严格匹配的VLMLT值, 在完全模型的运行中达到98 % 。 然而,我们也可以发现, 在完全的运行中,联合国40个任务中,我们发现, 也发现,在完全的运行中,运行中,可以找到这些飞行的运行中运行中, 。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
雪球
6+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
32+阅读 · 2020年4月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
雪球
6+阅读 · 2018年8月19日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员