We present an improved post quantum version of Sakalauskas matrix power function key-agreement protocol, using rectangular matrices instead the original square ones. Sakalauskas matrix power function is an efficient and secure way to generate a shared secret key, and using rectangular matrices can provide additional flexibility and security in some applications. This method reduces the computational complexity by allowing smaller random integers matrices while maintaining equal security. Another advantage of using the rank-deficient rectangular matrices over key agreement protocols is that it blocks linearization attacks.
翻译:本文提出了一种改进型的量子后向协议,采用矩形矩阵而不是原始的正方形矩阵,以Sakalauskas矩阵幂函数为基础,旨在生成共享秘密密钥。使用矩形矩阵可以在保持同等安全性的情况下提供额外的灵活性和安全性,因此可以通过允许较小的随机整数矩阵来降低计算复杂度。采用秩缺失的矩形矩阵的另一个优点是可以阻止线性化攻击。