The performance of spectral clustering heavily relies on the quality of affinity matrix. A variety of affinity-matrix-construction methods have been proposed but they have hyper-parameters to determine beforehand, which requires strong experience and lead to difficulty in real applications especially when the inter-cluster similarity is high or/and the dataset is large. On the other hand, we often have to determine to use a linear model or a nonlinear model, which still depends on experience. To solve these two problems, in this paper, we present an eigen-gap guided search method for subspace clustering. The main idea is to find the most reliable affinity matrix among a set of candidates constructed by linear and kernel regressions, where the reliability is quantified by the \textit{relative-eigen-gap} of graph Laplacian defined in this paper. We show, theoretically and numerically, that the Laplacian matrix with a larger relative-eigen-gap often yields a higher clustering accuracy and stability. Our method is able to automatically search the best model and hyper-parameters in a pre-defined space. The search space is very easy to determine and can be arbitrarily large, though a relatively compact search space can reduce the highly unnecessary computation. Our method has high flexibility and convenience in real applications, and also has low computational cost because the affinity matrix is not computed by iterative optimization. We extend the method to large-scale datasets such as MNIST, on which the time cost is less than 90s and the clustering accuracy is state-of-the-art. Extensive experiments of natural image clustering show that our method is more stable, accurate, and efficient than baseline methods.


翻译:光谱群集的性能在很大程度上取决于亲近矩阵的质量。 已经提出了各种亲近性矩阵构建方法,但主要想法是在一组候选人中找到最可靠的精密度矩阵,以事先确定,这需要强有力的经验,并导致实际应用方面的困难,特别是在集群间相似性高或/和数据集大的情况下。 另一方面,我们往往必须确定使用线性模型或非线性模型,这仍然取决于经验。为了解决这两个问题,我们在本文件中为子空间群集提出了一种精密性粗通的引导搜索方法。主要想法是在一组候选人中找到最可靠的精密度缩略图,而这一组候选人是用线性和内核回归回归法构建的,而当本文件中定义的Laplacecian图的可靠性被量化时,从理论上和数字上看,我们用一个较大的相对精密的内基质模型往往能提高内基质的准确度和稳定性。 我们的方法可以自动搜索最优的模型和超值的直流利度模型和超值的直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的模型, 。 搜索是高直径直径直径直的太空的计算方法, 。 。 。 。 搜索可以使空间的內基底基底基底的计算法是高空基底的计算法是高空基底法, 。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
55+阅读 · 2020年2月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
7+阅读 · 2020年8月7日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
55+阅读 · 2020年2月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员