Despite numerous successes in Deep Reinforcement Learning (DRL), the learned policies are not interpretable. Moreover, since DRL does not exploit symbolic relational representations, it has difficulties in coping with structural changes in its environment (such as increasing the number of objects). Relational Reinforcement Learning, on the other hand, inherits the relational representations from symbolic planning to learn reusable policies. However, it has so far been unable to scale up and exploit the power of deep neural networks. We propose Deep Explainable Relational Reinforcement Learning (DERRL), a framework that exploits the best of both -- neural and symbolic worlds. By resorting to a neuro-symbolic approach, DERRL combines relational representations and constraints from symbolic planning with deep learning to extract interpretable policies. These policies are in the form of logical rules that explain how each decision (or action) is arrived at. Through several experiments, in setups like the Countdown Game, Blocks World, Gridworld, and Traffic, we show that the policies learned by DERRL can be applied to different configurations and contexts, hence generalizing to environmental modifications.
翻译:尽管深度强化学习(DRL)在许多方面取得了成功,但学习到的策略并不可解释。此外,DRL没有利用符号关系表示的能力,因此在处理环境的结构变化(如增加物体数)方面有困难。另一方面,关系强化学习(RRL)继承了符号规划的关系表示,以学习可重用的策略。然而,迄今为止,它无法扩展和利用深度神经网络的能力。我们提出一种深度可解释关系强化学习(DERRL)框架,它充分利用了神经和符号世界的优点。通过使用神经符号学方法,DERRL将符号规划的关系表示和约束与深度学习相结合,以提取可解释的策略。这些策略采用逻辑规则的形式,解释了每个决策(或行动)的到达方式。在倒计时游戏、方块世界、Gridworld和交通等设置中进行了多项实验,结果表明,DERRL学习的策略可以应用于不同的配置和环境中,从而推广到环境修改。