Access to accurate, granular, and up-to-date poverty data is essential for humanitarian organizations to identify vulnerable areas for poverty alleviation efforts. Recent works have shown success in combining computer vision and satellite imagery for poverty estimation; however, the cost of acquiring high-resolution images coupled with black box models can be a barrier to adoption for many development organizations. In this study, we present a interpretable and cost-efficient approach to poverty estimation using machine learning and readily accessible data sources including social media data, low-resolution satellite images, and volunteered geographic information. Using our method, we achieve an $R^2$ of 0.66 for wealth estimation in the Philippines, compared to 0.63 using satellite imagery. Finally, we use feature importance analysis to identify the highest contributing features both globally and locally to help decision makers gain deeper insights into poverty.
翻译:获得准确、颗粒和最新贫穷数据对人道主义组织确定减贫工作的脆弱领域至关重要,最近的工作显示,在将计算机远景和卫星图像相结合以进行贫穷估计方面取得成功;然而,获得高分辨率图像和黑盒模型的成本可能阻碍许多发展组织采用。在本研究中,我们提出一种可解释和具有成本效益的贫穷估计方法,利用机器学习和方便获取的数据来源,包括社交媒体数据、低分辨率卫星图像和自愿提供的地理信息。我们采用的方法,在菲律宾实现0.66美元的财富估计,而使用卫星图像的费用为0.63美元。最后,我们利用特别重要性分析,确定全球和地方贡献最大的特征,帮助决策者更深入了解贫穷问题。