We lift the SCL calculus for first-order logic without equality to the SCL(T) calculus for first-order logic without equality modulo a background theory. In a nutshell, the SCL(T) calculus describes a new way to guide hierarchic resolution inferences by a partial model assumption instead of an a priori fixed order as done for instance in hierarchic superposition. The model representation consists of ground background theory literals and ground foreground first-order literals. One major advantage of the model guided approach is that clauses generated by SCL(T) enjoy a non-redundancy property that makes expensive testing for tautologies and forward subsumption completely obsolete. SCL(T) is a semi-decision procedure for pure clause sets that are clause sets without first-order function symbols ranging into the background theory sorts. Moreover, SCL(T) can be turned into a decision procedure if the considered combination of a first-order logic modulo a background theory enjoys an abstract finite model property.
翻译:我们取消了用于一阶逻辑的SCL(T)微积分,但没有平等,而没有平等,而是用于一阶逻辑的SCL(T)微积分,这是一种背景理论。简言之,SCL(T)微积分描述了一种新的方法,用一种部分模型假设来引导等级分解推理,而不是象在等级叠加中那样的先行固定顺序。模型的表述包括地底背景理论、地表前排第一阶字典。模型指导方法的一个主要优点是,SCL(T)产生的条款具有非冗余属性,使得昂贵的调理学测试和前期子子抽取完全过时。SCL(T)是纯粹条款组的半决定程序,这些条款没有先行函数符号设置在背景理论种类中。此外,如果考虑将第一阶逻辑模型组合,背景理论具有抽象的有限模型属性,则SCL(T)可以变成一种决定程序。