In this paper, we present an approach to deal with the dynamics of the Dirac equation with time-dependent electromagnetic potentials using the fourth-order compact time-splitting method ($S_\text{4c}$). To this purpose, the time-ordering technique for time-dependent Hamiltonians is introduced, so that the influence of the time-dependence could be limited to certain steps which are easy to treat. Actually, in the case of the Dirac equation, it turns out that only those steps involving potentials need to be amended, and the scheme remains efficient, accurate, as well as easy to implement. Numerical examples in 1D and 2D are given to validate the scheme.


翻译:在本文中,我们提出一种方法,用第四顺序压缩时间分拆法(S{text{4c}$)处理Dirac等式的动态和时间依赖电磁潜能。 为此,引入了对时间依赖汉密尔顿人的时间排序技术,这样时间依赖人的影响可以限于容易处理的某些步骤。 事实上,在Dirac等式中,只有那些涉及潜在可能性的步骤需要修改,而这一办法仍然有效、准确,而且易于实施。 1D和2D中的数字示例用于验证这一办法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员