Despite their success in massive engineering applications, deep neural networks are vulnerable to various perturbations due to their black-box nature. Recent study has shown that a deep neural network can misclassify the data even if the input data is perturbed by an imperceptible amount. In this paper, we address the robustness issue of neural networks by a novel close-loop control method from the perspective of dynamic systems. Instead of modifying the parameters in a fixed neural network architecture, a close-loop control process is added to generate control signals adaptively for the perturbed or corrupted data. We connect the robustness of neural networks with optimal control using the geometrical information of underlying data to design the control objective. The detailed analysis shows how the embedding manifolds of state trajectory affect error estimation of the proposed method. Our approach can simultaneously maintain the performance on clean data and improve the robustness against many types of data perturbations. It can also further improve the performance of robustly trained neural networks against different perturbations. To the best of our knowledge, this is the first work that improves the robustness of neural networks with close-loop control.
翻译:尽管在大规模工程应用中取得了成功,但深神经网络由于其黑盒性质,很容易受到各种扰动的影响。最近的研究表明,深神经网络即使输入数据受到无法察觉的数量的干扰,也可能对数据进行错误分类。在本文件中,我们从动态系统的角度,通过一种新的近距离控制方法来解决神经网络的稳健性问题。我们的方法可以同时保持清洁数据的性能,并针对多种类型的数据扰动改进稳健的神经网络的性能。它还可以进一步改进经过严格训练的神经网络的性能,以适应受扰动或腐败的数据。我们最了解的是,我们利用基本数据的几何学信息将神经网络的稳健性与最佳控制结合起来来设计控制目标。详细分析表明,国家轨迹嵌入的方块如何影响对拟议方法的错误估计。我们的方法可以同时保持清洁数据的性能,并针对多种类型的数据扰动性能提高稳健性。它还可以进一步改进经过严格训练的神经网络的性能,以适应不同的扰动性。我们最了解的是,这是用近控制来改进神经网络稳健性的第一个工作。