Symmetry plays a major role in subgraph matching both in the description of the graphs in question and in how it confounds the search process. This work addresses how to quantify these effects and how to use symmetries to increase the efficiency of subgraph isomorphism algorithms. We introduce rigorous definitions of structural equivalence and establish conditions for when it can be safely used to generate more solutions. We illustrate how to adapt standard search routines to utilize these symmetries to accelerate search and compactly describe the solution space. We then adapt a state-of-the-art solver and perform a comprehensive series of tests to demonstrate these methods' efficacy on a standard benchmark set. We extend these methods to multiplex graphs and present results on large multiplex networks drawn from transportation systems, social media, adversarial attacks, and knowledge graphs.
翻译:在对相关图表的描述及其如何混淆搜索过程进行对比的子图中,对称性起着主要作用。 这项工作涉及如何量化这些效应以及如何使用对称性提高子谱异形算法的效率。 我们引入了严格的结构等值定义,并为何时可以安全地使用这些等值来产生更多解决方案创造了条件。 我们演示了如何调整标准搜索程序,以利用这些对称来加速搜索,并精细描述解决方案空间。 然后我们调整了最先进的求解器,并进行了一系列全面的测试,以在标准基准集上展示这些方法的有效性。 我们将这些方法推广到多面图,并展示从运输系统、社会媒体、对抗攻击和知识图表中提取的大型多面网络的结果。