In this article, we propose a new method named fused mixed graphical model (FMGM), which can infer network structures for dichotomous phenotypes. We assumed that the interplay of different omics markers is associated with disease status and proposed an FMGM-based method to detect the associated omics marker network difference. The statistical models of the networks were based on a pairwise Markov random field model, and penalty functions were added to minimize the effect of sparseness in the networks. The fast proximal gradient method (PGM) was used to optimize the target function. Method validity was measured using synthetic datasets that simulate power-law network structures, and it was found that FMGM showed superior performance, especially in terms of F1 scores, compared with the previous method inferring the networks sequentially (0.392 and 0.546). FMGM performed better not only in identifying the differences (0.217 and 0.410) but also in identifying the networks (0.492 and 0.572). The proposed method was applied to multi-omics profiles of 6-month-old infants with and without atopic dermatitis (AD), and different correlations were found between the abundance of microbial genes related to carotenoid biosynthesis and RNA degradation according to disease status, suggesting the importance of metabolism related to oxidative stress and microbial RNA balance.


翻译:在本篇文章中,我们提出了一种名为 " 结合混合图形模型(FMGM) " 的新方法,该方法可以推断二分体型苯酚型的网络结构结构。我们假定,不同的显微标记的相互作用与疾病状况有关,并提出了一种基于FMGM的方法,以探测相关的显微标记网络差异。网络的统计模型以双向Markov随机字段模型为基础,并增加了惩罚功能,以尽量减少网络中稀少的影响。快速准显微梯度法(PGM)用于优化目标功能。方法有效性是通过模拟电动法律网络结构的合成数据集来衡量的。我们发现,与先前按顺序推断网络(0.392和0.546)的方法相比,调微显色标记与F1分相比表现优异。 FMGM不仅在确定差异(0.217和0.410)方面表现更好,而且还在确定网络中的稀疏漏效应。拟议方法用于6个月有和没有色谱皮肤的婴儿的多组特征剖面性DNA(AD)来测量方法的有效性。还发现,与氨基质的丰度和与氧化性相关的微生物相关的基因的降解性关系,表明,其与微生物的丰度与氧化有关。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年11月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
52+阅读 · 2020年11月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员