We introduce the interactive tool pandemonium to cluster model predictions that depend on a set of parameters. The model predictions are used to define the coordinates in observable space which go into the clustering. The results of this partitioning are then visualized in both observable and parameter space to study correlations between them. The tool offers multiple choices for coordinates, distance functions and linkage methods within hierarchical clustering. It provides a set of diagnostic statistics and visualization methods to study the clustering results in order to interpret the outcome. The methods are most useful in an interactive environment that enables exploration, and we have implemented them with a graphical user interface in R. We demonstrate the concepts with an application to phenomenological studies in flavor physics in the context of the so-called B anomalies.
翻译:我们引入了交互式工具平台, 用于取决于一组参数的集束模型预测。 模型预测用于定义进入集束的可观测空间的坐标。 然后在可观测空间和参数空间中将这种分割的结果可视化, 以研究它们之间的相互关系。 该工具为分层集群中的坐标、 距离函数和联系方法提供了多种选择。 它提供了一套诊断性统计和可视化方法, 用于研究集成结果, 以便解释结果。 这些方法在互动环境中最有用, 有助于探索, 我们用R. 中的图形用户界面来实施这些方法。 我们用所谓的 B 异常 来演示这些概念, 并应用在调味物理中的元素学研究。